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Abstract: Taking into account that in some 
applications one requires fusibles with different 
characteristic curves from those available 
commercially, we have applied a model to the study of 
fuse behaviour using different geometric forms with 
the purpose of verifying and obtaining different t-I 
characteristic curves. In this study we have seen that 
the opening time (prearcing time) of the fuselink 
depends on the geometric form of the fuse element, 
the possibility of varying the t-I curve through 
modification in the dimensions of the variable sections 
of a fuse allows fuses to be obtained for specific 
customised applications. 

I. INTRODUCTION 

Fuses have as a goal to act as protection devices 
for equipment, systems, installations, etc. in the case 
of anomalous situations or behaviors. The designer of 
such equipment, installations, etc. studies the limits 
within which the fuse must act in each case, so that the 
protected element does not suffer deterioration. 
Depending on the type of element to protect, a wide 
range of fuses is needed to suit the various needs. 
Therefore, one of the objectives of fuse design is to 
obtain fuses with different t-I performance curves, so 
that for each specific application the most suitable 
protection fuse can be obtained. To carry out versatile 
studies in this field without having to resort to real 
tests through prototypes, it is desirable to have 
mathematical models that adequately simulate their 
real behaviour. Nowadays, to obtain a better 
characteristic curve, the fuselink has been an 
evolution towards more complicated geometric 
shapes, presenting restrictions at regular intervals 
along their length (Fig. 1). Due to this complicated 
geometry and to the fact that, as a rule, parameters 
such as electrical resistivity, thermal conductivity and 
specific heat vary with temperature, it is not possible 
to undertake the study using simple analytical 
techniques and it is necessary to resort to numerical 
calculations to obtain a theoretically valid model of 

fuselink behaviour. Several authors [1-8] have developed 
models for estimating prearcing time for fuselinks. 
However, these models have some deficiencies, and so, 
in our work on fuselinks [9], we have developed a 
mathematical model to obtain t-I fuselink curves taking 
into account that the electric resistivity of the fuse 
element varies with temperature and that this is also true 
for the thermal conductivity and specific heat of the fuse 
element, the filler and the ceramic body. The heat 
losses to the filler and ceramic body are also take into 
account in our model. 

In this work, our model is used to study the t-I 
curves that can be obtained by modifying some of the 
dimensions that characterize the fusible element. At the 
same time, it demonstrates the validity of the developed 
model as a test tool for designers, since the t-I curve for 
the most adequate fuse for our needs can be calculated 
without the need for a prototype. 

II. DESCRIPTION OF THE MODEL 

The model has been described in detail in [9]. The 
model is based on the solution of the electric potential V 
(2), current density (1) (Jx and Jy) and heat diffusion (3) 
equations using the approximation of the partial 
derivatives by central finite differences. In this model the 
variation of the different parameters with temperature is 
taken into account in the equations. Briefly, As the 
fuselink used for the experimental contrasting of the 
theoretical model presents the shape shown in figure 1, 
due to the symmetry, figure 2 shows the element of 
fuselink that has been used for the solution of equations. 
To calculate prearcing time it is necessary to solve the heat 
equation in the fuselink using as the energy source the heat 
produced by Ohmic losses (4) computed using the current 
density: 
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where p, d, Cp, K and T are, respectively, the 
resistivity, density specific heat, thermal conductivity 
and temperature. Qv represents the energy generated in 
the material per unit of volume and per unit of time. 
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Fig. 1: Typical fuselink element 
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Taking into account that equation (5) is non-linear, 
in order to be able to use the implicit method [10] in the 
calculation of the partial derivatives by finite differences, 
the non-linear terms are estimated at the previous discrete 
time where the temperatures are known. This has allowed 
us to obtain a set of linear equations whose unknown 
quantities are the temperatures at all discrete points (i,j,k) 
at the moment of discrete time n+1, (the heat generation 
and temperatures at the previous discrete moment n being 
known), relating the temperature at a discrete point (i,j,k) 
with the temperature at the adjacent discrete points. The 
solution of the set of equations for every discrete time has 
been obtained using the Gauss-Seidel relaxation method. 
First, the potential distribution with the temperature 
existing at the beginning of every discrete time step or 
iteration is obtained, then, the current density is obtained 
and is used in equation (5) to obtain the new temperature 
at every discrete point at the end of the discrete time step. 
The new temperatures substitute the first ones repeating 
the process in the following iterations. The process ends 
when melting temperature is reached in the copper fuse 
element, thereby determining prearcing time. 
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Fig.2: Symmetrical part of an element used in our 
model and finite-difference mesh. 

By using a discretization in the fuselink as shown 
in figure 2, the approximation of partial derivatives by 
central finite differences [10] allows us to obtain the 
electric potential and the components of the current 
density at each discrete point (i,j). 

Taking into account thermal conductivity 
variation with temperature, the discretization of (3) 
around central points allows the new temperature 
T’(i,j,k) at discrete coordinates points (i, j, k) after a 
discrete time interval At to be computed by means of: 
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Fig.3: L and W: dimensions of the fuse element 
modified to study their influence on the t-I curve. 

III. RESULTS 

The developed model has been contrasted through 
the results comparison with a real fuse [9], The objective 
of this work is to check the versatility of the model to be 
used in fuse design. Since the real fuse has given 
dimensions, it is interesting to check how the t-I 
characteristic curve of the fusible varies when modifying 
specific dimensions of the same. In this case, the fusible 
element presents the form in fig. 1. For this work, only 
the length L of the restriction and the width W of the 
fusible element were modified (fig.3), that is, the width 
and the thickness of the restriction have been preserved 
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as well as the length and the thickness of the broad 
part of the fusible. 

With the purpose of studying how the increase or 
decrease of the rectriction length L can affect the t-I 
characteristic curve of the fusible, the prearcing time 
of the fusible was calculated using different length L 
measurements, while keeping the remaining 
dimensions constant. Figure 4 shows the prearcing 
time as a function of the r.m.s. current obtained for 
three different values of the length L of the restriction: 
0.5, 2 and 10 mm. 

factor of 4 with respect to the times obtained for the 
length of 2 mm, at least for r.m.s. currents with typical 
overcharge values. As the short-circuit current increases, 
both t-I curves approach each other, practically 
coinciding for currents over 300 A. It is clear that the 
increase in the length of the restriction causes the losses 
of heat toward the broad part of the fusible to be quite a 
lot less than for the other cases, therefore affecting to a 
great extent the prearcing time in the area for overcharge 
and weak short-circuit currents. For high short-circuit 
current values the process is practically adiabatic, 
therefore the prearcing times are not affected by the 
restriction length. 
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Fig.4: influence on t-I curve of the restriction length. 
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In this case the real fuse used for the calculations 
has a thickness of 0.1 mm, a restriction width of 0.5 
mm and a restriction length (L) of 2 mm. In this case, 
resistive short-circuit has been assumed, that is, the 
current is totally symmetrical. Such as we have 
already demonstrated in [9], the theoretical values of 
prearcing time obtained with our model coincide 
totally with those obtained experimentally. If 
(theoretically) the length of the restriction is reduced 
(in our case to 0.5 mm) the prearcing times are 
increased notably (three times longer), and values that 
practically coincide with those for the real fuse are 
obtained solely r.m.s currents over 300 A. 

Clearly, the reduction of the restriction to so small 
a length gives rise to an important part of the heat 
generated in the restriction being lost through 
conduction toward the broad part of the fusible, even 
in spite of the fact that the short circuit r.m.s. current 
will be increased. If we increase the length of the 
restriction (10 mm), the opening time is reduced by a 

Fig.5: influence on t-I curve of the broad part width. 

Figure 5 shows the prearcing time as a function of 
the short-circuit current for three width values W of the 
broad part of the fusible. The restriction length measures 
2 mm for the three cases. Likewise, the remaining 
parameters are identical. As can be observed, the t-I 
characteristic of the fusible depends on the width W, 
although the effect is greater for typical overcharge 
currents. This influence is reduced as the short circuit 
currents is increased. For currents over 300 A, identical 
prearcing times are obtained for the three widths tested. 

The reduction of the broad area of the fusible (with 
high thermal conductivity) causes the thermal losses to 
be smaller (low thermal conductivity of the material - 
sand - in contact with the copper), so the time needed to 
reach the melting point is reduced. At r.m.s. currents, the 
melting process is quasi-adiabatic, therefore the 
reduction in the broad part of the fusible does not affect 
the time needed to reach melting point. It is clear that, by 
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varying both the reduction of the restriction length and 
the width of the broad part, quite different t-I 
characteristics can be obtained. 
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Fig.6: I2t as a function of the r.m.s. current. 

Figure 6 shows the I2t characteristic of the 
fusible for the prearcing time values corresponding to 
Figure 4. As can be observed, the energy needed to 
reach melting point is a function of the restriction 
length, according to Figure 4. Energy decreases with 
the increase of the short circuit current reaching a 
constant value for currents over 200 A for the case of 
2 and 10 mm of restriction lengths. For the given 
current, the fuse starts to limit the short-circuit current 
(prearcing time <0.05 s). For the 0.5 mm case, a 
constant energy value is reached only for current 
values over 10 kA. 
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The studies carried out have permitted us to show 
that the use of mathematical models in fuse design is a 
necessary tool that will avoid loss of time and material 
in prototypes and trials in order to obtain a fuse that is 
better adapted to the characteristics required by the 
client. The use of such models will reduce costs, since 
tests will only be carried out on prototypes once the 
mathematical model has obtained the sought-after t-I 
curve. 
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