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Abstract: This works deals with calculations of 
pre-arcing time prediction for fuse links used in 
industrial protection circuits in case of heavy 
faults-currents. An enthalpy method to solve 
heat-transfer equation included two phase-
changes is presented. The mathematical model 
couples thermal and electrical equations based 
on the principle of energy conservation and the 
Ohm’s law respectively. In order to determine 
current density and temperature evolution in the 
fuses, three typical fuse links have been chosen 
for the calculations with circular, rectangular 
and trapezoidal reduced sections at their centre. 
Silver physical properties, mathematical 
equations and the numerical method are 
reported. Calculations results show that for the 
fuse link with rectangular reduced section a 
major heat-transfer mechanism took place 
compared to the other ones. 
 
Keywords: High Breaking Capacity fuses, pre-
arcing time, heavy fault-currents, Stefan 
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1. Introduction 
 
   The fuses studied which common name is High 
Breaking Capacities fuses comprise four main 
elements: a fuse link (usually silver of high purity) 
with one or series reduced sections named notches 
in different checked shapes, the filling cavity 
(mechanically and thermally resistant), and the 
filling silica sand (or quartz) of high purity. HBC 
fuses operate in two stages, pre-arcing operation 
and arcing operation. The pre-arcing operation 
corresponds to the time from the apparition of a 
high fault current to the vaporization of the 
constricted sections and the disruption of the fuse 
link. 
 
   The modelling of the pre-arcing stage has been 
the object of several works until now. These 
theoretical works consist in semi-empirical 
modelling or physical modelling dedicated to the 
pre-arcing stage [1, 2]. The theoretical works 
dedicated to the pre-arcing stages proposed various 
models based on the heat transfer occurring into 
different fuses design [3-6]. In these models the end 
of pre-arcing operation is defined by the time to 
reach the melting temperature of the fuse element. 
Thus for pre-arcing time prediction calculations are 

lead until melting temperature is reached. In this 
paper a model which considers the phase-changes 
to describe heat-transfer occurring in the fuse is 
presented. The model is based on the solution of the 
heat-transfer equation via an enthalpy formulation 
which allows taking into account two phase-change 
problems. This method also called Stefan problem, 
has been studied in [7] and it is useful in other 
thermal problems involving phase changes [8, 9]. 
Calculations are performed for three fuse elements 
with different reduced sections shapes located at 
their centre .In the case of short prearcing time (up 
to 10 ms), where the fuse-element temperature 
rising is almost adiabatic [8], a high overload 
current is applied, heat-loss is governed only by 
thermal conduction and other heat-loss mechanism 
are neglected. The heat-transfer equation is a 
mathematical equation coupling thermal and 
electrical equations.  
 
   We present in a first time, fuse-links geometries 
and physicals properties of silver, following by the 
modelling equations, which stand for thermal and 
electrical phenomena, the imposed hypotheses of 
the model and the numerical procedure, are 
developed in section 3. In section 4 we show and 
discuss the numerical results. 
 
2. Geometrical hypotheses and physical 

data 
 
2.1.  Fuse links description 

 
   The fuse links studied have circular, rectangular 
and trapezoidal reduced sections located at their 
centre. 
 

The geometries of the three tested fuse elements 
are presented in figure 1. The fuse links have cross 
section and reduced section of respectively le= 
2.5×0.105 mm2 and l'e=0.5×0.105 mm2, where e is 
the thickness of the fuse link. The fuse links lengths 
are L=70 mm and are made from pure silver strip 
(99.95%).  The following areas are defined for the 
numerical treatment: 
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(a) 

 

(b) 

 

(c) 

Fig. 1: 2-D geometries of the fuse links. 

2.2. Physical properties of Silver 
 
   Table 1 presents thermodynamical data use in the 
computations; the parameters depending on 
temperature are given at reference temperature. The 
evolutions of the physical properties as functions of 
the temperature are in the following figures. 
 

Table 1: Physical properties of the Silver 

Silver density ρ = 10500 kg.m-3 at 293 K 
Thermal 

conductivity k = 452 W.m-1.K-1 at 293 K 

Electrical 
conductivity σ = 64.17×106 S.m-1 at 293 K 

Solid heat 
capacity cs = 261.36 J.kg-1.K-1 at 293 K 

Liquid heat 
capacity cl  = 310.4 J.kg-1.K-1 at 1235 K 

Melting 
temperature Tm = 1235 K 

Boiling 
temperature Tv = 2433 K 

Melting latent 
heat Lf  = 1.05×105 J.kg-1 

Vaporization 
latent heat Lvap = 2.43×106 J.kg-1 

    
 
The most used and complete thermal conductivities 
for silver are quoted in Touloukian tables [10]. 
Figure 2 presents silver thermal conductivity as a 
function of temperature for silver. It can be seen a 
strong decrease of thermal conductivity during the 

solid to liquid phase-change. This thermal 
conductivity de-crease is of : 
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Fig. 2: Thermal conductivity versus temperature. 

 
   Figure 3 shows two type of data concerning 
electrical conductivity which occurs in the Joule 
heating term. The electrical conductivity has been 
measured (continuous lines) [11] and calculated 
(dashed lines) by means of Wiedemann and Franz 
law [12] which is written in terms of: 

,TLk
×=

σ
                                                   (1) 

where 2281045.2 KVL −×=  is the Lorenz coefficient, 
T is the temperature, k  andσ are respectively the 
thermal and the electrical conductivity.  
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Fig. 2: Electrical conductivities versus temperature 
measured (dashed lines) calculated (continuous 
lines). 

As electrical conductivity is concerned, it can be 
seen from the figure that an electrical conductivity 
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decreases of -16 S.m 101037.6)()( ×=− mlms TT σσ  
when phase-change occurs. 
    
A very good agreement is observed between the 
measured and the calculated values. 
   Figure 4 shows the enthalpy as a function of 
temperature. It can be seen from the figure two 
jumps named melting latent heat Lf and vaporisation 
latent heat Lv. This figure is an enthalpy 
formulation of the Stefan problem. 
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Fig. 3 : Enthalpy versus temperature [13]. 
 
 
3. Physical model of the fuse element 
heating and numerical method 
 
   Heat transfer equation is obtained by expressing 
heat balance equation, based on principle of energy 
conservation, expressing a balance between heat-
loss mechanism and power injected: 
 

,).( STk
t

H
=−

∂
∂ graddiv                                       (2) 

 
   Where H is the volumetric enthalpy, k is the 
thermal conductivity, T is the temperature. The 
source term representing the heat generated by 
Joule heating writes: 
 

,
2

σ
J

=S                                                              (3) 

    
 where J is the current density vector and σ is the 
electrical conductivity. 
   To solve numerically the heat equation, a 
reciprocal form of H (T) is defined as  β (H (T)) =T 
[7], and the Stefan problem in enthalpy-
temperature, with boundaries and initial conditions 
is given by the set of equations: 
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   where H0 is an initial condition stands for 
enthalpy at time t=0. The Joule heating in equation 
(3) is obtained by solving the following equations: 
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where V, E and I (t) are respectively the electric 
potential, the electric field vector and the electric 
current. n is the outward unit normal to the 
boundary. We have prescribed the following 
boundary conditions: 

• on Γ1 defined as the anode, a Neumann 
condition is imposed for the current 
density flux;  

• a Dirichlet condition for the potential in Γ2 
defined as the cathode; 

• for the other boundaries a homogeneous 
Neumann condition is assumed. 

    
To solve numerically the thermal electric 

problem (equations (4) and (5)), we use in the space 
discretization a standard finite element method [14], 
and the time integration of the heat equation (4) is 
performed by using a Chernoff scheme [7] which 
consists in the relaxation of the relation ( )TH  
(Figure 4).  
 
4. Numerical results 
 
   Numerical results are given for the temperature, 
the Joule heating, the potential and the resistance 
evolutions for the three tested fuse links. For the 
evaluation of the pre-arcing time in fuse-links the 
calculations are led with the prospective current 
given by Equation (6) until the vaporization 
enthalpy is reached. For each fuse element the 
following voltage characteristics are used to remain 
in the short pre-arcing time domain: a maximum 
voltage of VV 2300ˆ = .  
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The prospective current use in calculations is 
written as: 
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where V̂ is the supplied voltage, R is the resistive 
load, L is the inductive load, ω  is the pulsation at 
50 Hz, θ is the closing angle, ϕcos  is the power 
factor, t is the time. 
 
   The figure 5 shows examples of a non-structured 
2-D meshes uses in calculations for the three tested 
fuse links, the mesh being performed using the 
mesh generator software GMSH [15]. The fuse 
elements meshes are composed of 7308 triangle 
cells and 3655 nodes for the circular notch (a), 7148 
triangle cells and 3575 nodes for the rectangular 
notch (b) and of 7446 triangle cells and 3724 nodes 
for the trapezoidal notch (c); the reduced sections 
are meshed as more finely. 
 

 
(a) 

 

(b) 

 

(c) 

Fig. 4: Fuse links meshes. 

 
   Temperature at the initial time is fixed at 
T0=300K, the time step is fixed at ∆t=10-5s and 
calculations are stopped once the enthalpy of 
vaporization is reached. 
Figure 6 illustrates an example of 2-D cartography 
of the temperature distribution in the fuse links at 
the end of pre-arcing time obtained at t=3.9 ms for 
the three fuse links. 

 

 
 

Fig. 5: Isothermal distributions in the fuse-element 
at the end of prearcing time. 

   It can be seeing that the temperature rise takes 
place in the notch centre where isothermal contours 
are induced by the reduced sections shape. This is 
clearly demonstrated in figure 7 which presents 
temperature distribution along the fuse for the three 
reduced sections fuse links just before the creation 
of electric arc. The peak of temperature stand for 
the rectangular notch fuse link has a width of 
around 2 times the circular and the trapezoidal ones. 
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Fig. 6: Temperature distribution in the fuse-link 
following the x-direction at y=1.25mm. 

 
   Figure 8 presents the temperature history during 
the pre-arcing time for the three considered fuse 
links. The temperature of the fuse links evolve 
according to four stages: a gradual increase up to 
the melting temperature, followed by the phase 
change at constant temperature during a lapse time. 
The third stage which corresponds to the strong 
temperature rise due to the high resistivity of the 
fuse links and the last stage corresponds to liquid 
vapour transition. The time necessary to this 
transition is longer due to the latent heat of 
vaporization which is about 20 times the latent heat 
of fusion as previously given in Table 1. 
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Fig 7: Temperature history at positions x =35 mm 
for y = 1.25 mm for the three fuse links. 

 
   It is noteworthy to note that for the rectangular 
notch fuse link, the temperature rise up to the 
vaporization temperature is faster than the two 
others fuse links and the liquid vapour transition 
time is longer than the other ones. Indeed due to the 
abrupt constricted section at the centre of the 
rectangular notch fuse link, a fast and strong 
increase of Joule effect induced by a maximum of 
current density is observed in figure 9. 
   The joule heating history versus time has the four 
stages previously quoted. Concerning the last stage 
a joule heating increase is observed due only to the 
current density rise. Indeed the electrical resistivity 
is almost constant after the vaporization 
temperature.  
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Fig. 8: Joule heating rise of the three fuse links 
during the pre-arcing time, at positions x =35 mm 
for y = 1.25 mm. 

 
   Figure 10a and figure 10b presents respectively 
the calculated evolutions of resistance and voltage 
of the three fuse links as functions of time.  
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Fig. 9: Voltage and resistance histories versus time 
for three fuse links. 

 

   The voltage curves and the resistance curves 
show a two-step evolution: the first step is 
characterized by a slow increase and the second 
step is characterized by a fast increase. This is due 
to the silver resistivity which is 2 times more 
important in the liquid state than in the solid state 
and consequently the voltage evolution has same 
characteristics. 
 
5. Conclusion 
 
   A model to predict pre-arcing time in heavy fault 
currents applied to HBC fuses has been presented. 
The model is based on the solution of heat-transfer 
equation including two phase-changes. Thermal 
conduction and Joule heating are respectively, the 
major heat-loss and heat source. The enthalpy 
method is used of calculating short pre-arcing times 
in three silver typical fuse links. A comparison 
between the numerical results shows that for the 
fuse link with rectangular notch a fast and strong 
Joule heating due to a highest resistivity than the 
two others. A maximum of energy correspond to 
the latent heat of vaporization is necessary to 
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vaporize and to allow the disruption of the fuse 
links. 
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