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SURVEY OF NUMERICAL METHODS FOR 

SOLVING TIME-VARYING FUSE EQUATIONS 

P.M. McEwan and L. Warren 

Principal Nomenclature 

Specific heat 
Density 

Ambient temperature 

Fuse element temperature 

Fuse element melting temperature 
Electrical conductivity 

Ambient value of electrical conductivity 
Thermal conductivity 
Thermal difusivity (k/cp) 

Time step length 
Time 

Step length 

Prospective current 
Cross-sectional area 
Current density 

Temperature coefficient of Resistance 
Generalised space and time identifiers 

(Tj_ corresponds to temperature at point i fix along 
element at time n At seconds) 

^• INTRODUCTION Computer prediction of fuse characteristics have 
obvious labour saving benefits and advantages in computing fuse perform- 
ances which are difficult or impossible to determine from tests. 

Prior to digital computers equations of the form of (1) for simulating 
prearcing performances of fuses were impossible to solve accurately for all 
but the very simplest of fuse geometries unless gross reductions were 

made in fuse representations. The advent of high speed digital computers 
and powerful numerical methods has great-ly enhanced equation solving 

capability enabling improved predictions of fuse performance. 

The ideal pre-requisites of numerical methods for solving equations by 

computer are: 

High Accuracy 
Guaranteed Numerical Stability 

Low Computer Running Times 
Minimum Complexity 

Low Computer Storage 

This paper presents results of a study of numerical methods for solving 
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parabolic equations to enable selection of the most suitable numerical 

methods for solving the pre-arcing performance of fuses subject to the 

stated idealised numerical constraints. 
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2. NUMERICAL METHODS STUDIED Fuse numerical solutions involve divi- 

ding fuse elements into small sections and determining the temperature of 

each section over discrete time intervals. By this technique the partial 

differential equations governing joulean heat flow in fuse elements may 

be approximated by difference equations using surrounding temperature 

values and temperature rise calculated in terms of space and time ordin- 

ates for all fuse geometries. This treatment reduces O) to sets of sim- 

ultaneous algebraic equations which may be solved at successive time int- 

ervals using a numerical method. 

Three broad classes of numerical method exist for solving the type of 

algebraic equations resulting from fuse modelling. These methods are: 

Matrix methods 

Finite Element methods 

Finite Difference methods 

Upon examination Matrix and Finite Element methods were found to require 

much greater storage than the Finite Difference variety as numerical co- 

efficients in the latter method's algorithms are implicit and thus do not 

need storing. In addition Finite Difference methods were found to be 

more flexible for generalised solutions and simpler to apply. 

The Finite Difference methods were consequently preferred for solving 

fuse equations. These methods were applied to time-varying fuse equations 

and critically examined against the criteria established in Section 1 by 

comparing computed results with analytical solutions of equation (1). 

A simple example of electro-thermal heat flow was used for comparison pur- 

poses. The example was that of a thermally insulated uniform section 

current carrying conductor with ends held at zero temperature. Time- 

varying solutions are feasible for this problem providing that heat is 

generated at a constant rate1. The heat flow for this case is one 

dimensional and therefore governed by (2). 

... (2) 

The analytical solution for temperature along the conductor is given by 

(3). The general form of temperature variation with time and position 

along the conductor is shown in figure 1 for general values of time equal 

to (n-1) At, n At and (n+1) At. 
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Temperature may be monitored along the conductor at discrete points Ax 

at time intervals At, 2 At ... (n-l)At, nAt, etc., as indicated.Numerical 
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Solution of the same problem requires replacement of derivatives 3T/3t and 
ä^T/dx^ in (2) by difference approximations. For instance d^T/dx^may be 

deduced at all points along the conductor at time n At in terms of temper- 
ature at generalised points (i—1 ) Ax, i Ax and (i+1) Ax giving 

™ - 
O". ‘Tili + Ti-i -2T" > ... (4) 

3x" A x~ 

The time derivative at all points iAx at time n At consequently becomes 

n n , n „n, 
(Jli) = J<_ (Td 

at cp 
i+1 

+ _ 2T^) + ... (5) 
cpO 

This approximation is made at all points along the conductor and leads to 

( V Ax - 1) simultaneous equations for specifying temperature along the 
conductor. 

The time derivative may be approximated also by differences, the simplest 
of which is 

■ 

(T"
+1
- TJ> 

At 

and leads to the Euler formulation and Explicit numerical prediction 
method for T. at t = (n+1) At 

Tn+/* = T? + 1 TT”) At ... Euler Method 
1 1 at 

from which 

T* = TJ + M(T" + T" - 2T") + jiAt 1 1 1+1 1-1 1 cpO 

k At 
M =  — 9 and is termed the modal parameter. 

cp Ax4- r 

n+1 
The Explicit method predicts T’ for T in figure 2. 

An alternative formulation uses forward 

the Implicit (Laasonen) method. 
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difference formula and results in 
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... Implicit Method 

In this case T. is solved iteratively at each time step at all points 

along the conductor. The Implicit method predicts T" for T?"*"l in figure 2. 

Clearly from inspection of Tn+1 predictions with the Explicit and Implicit 

methods a more accurate formulation would be the average of both predict- 
ions. This formulation leads to the 2nd order Runge Kutta formula and 

Crank Nicholson method. 
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The Crank Nicholson algorithm is implicit in T^+1 and T?^ and must also 

be solved iteratively. The Crank Nicholson method predicts T’11 for 

T^+1 in figure 2. 

A variation in the Implicit method was used by Leach, Newbery and 
Wright^. 

Here T^4"^ is computed at t = (n+^r) At using the Standard Implicit 

method and Tn+1 obtained by linear extrapolation using Tn+^=-^(Tn+"'+Tn), 

Another method used for solving parabolic equations is the "Du Fort 

Frankel" method. This method uses central difference formulae over the 
interval 2 At viz: 

whereupon 
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3. BASIS FOR COMPARISON The above methods were compared with analy- 

tical solutions for temperature along uniform current carrying conductors 

as specified in section 2. The solution for time-varying temperature 

distribution is given by (3) and shown in figure 3. Numerical solutions 

were obtained for each of the methods discussed and the Crank Nicholson 
and Leach et al. methods were found to be identical and the most accurate 

for this problem. Errors increased as prediction time lengthened and as 

the step length Ax increased for all methods, figure 4. 

Prediction of prospective current versus melting time was more accurate, 

figure 5, which is to be expected from inspection of respective express- 
ions for maximum temperature along the conductor and melting current. 
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A. ACCURACY OF METHODS Errors in numerical solutions occur due to 

'round-off* and 'truncation' errors. Round-off errors are produced upon 
rounding off computed values to fixed decimal places and are not normally 

problematical with modern computers. Greatest error is introduced by 
approximating derivatives by simple forward and backward difference form- 
ulae and is termed truncation error. The error occurs at each computation 

step and may propagate to excessive proportions unless controlled. 

Truncation error is assessible upon expanding T™+ in Taylors series in 
both time and space ordinates. For example in the one dimensional 

2 the truncation error is Explicit formulation considered in section 
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The coefficients of At and Ax in the error term are bounded because of 
the continuity of the partial derivatives and will take values depending 
upon the problem under investigation. The truncation error = K^At+I^CAx; 
for all sufficiently small At and Ax. Usual practise expresses the 

truncation error and implied conditions symbolically as 

0[At] + 0[(Ax)2] 

The truncation errors for the other numerical methods are determined in 
similar manner and are as summerised. 

Implicit Method 

Crank Nicholson Method 

Du Fort Frankel Method 

Truncation error 

oCAt ] + 0 [ ( Ax)2] 

0 [( At)2] + 0 E( Ax)2] 

0 [( At)2] + 0 [( Ax)2] + oE( “ )2] 

Clearly for good accuracy Ax and At should be arranged to be much less 

than unity and for the Du Fort-Frankel method At < < Ax. 

The errors were found consistent with computed results where the Crank 

Nicholson method was the most accurate and the Du Fort Frankel the least. 
The poor accuracy of the Du Fort Frankel method was expected as the method 

requires a starting method to obtain T1?-1 at the first time step and 

( At/ Ax) was finite. 

5. BEHAVIOUR OF NUMERICAL METHODS In solving solutions over long times 

it is desirable to use the largest possible time step to minimise computer 

running time. Increase of At for a given fuse model however increases the 
modal parameter M and affects the accuracy and behaviour of solution. 

Moreover if M is increased indiscriminately solutions may oscillate 
giving false convergence and in some cases become instable. 

4 
The numerical behaviour of all the methods were studied using Richtmeyers 

generalised stability analysis and test runs with each method. Richtmeyers 
stability analysis covers numerical formulations of the form 
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T n+1 vT n 

Ti+1 = Ti+{0(Iti) + 0 "0 } ] At 

The formulation is suitable for investigating the behaviour of the 
Explicit,Implicit and Crank Nicholson methods as G = 0, 1, % corresponds 
to each method respectively. 

Richtmeyers Analysis though general is valid only for equations of the 

form 

AT 
At 

K 
cp 
A 

2 
(6) 

The equation though simpler than (2) for one dimensional joulean heat 

flow in conductors is useful in providing guidance on stability perform- 

ance of the methods considered, however for practical fuse modelling 
numerical behaviour should also be assessed from test runs with various 

time steps. 

Analytical solution of (6) is 

jmi Ax 

where 

'(m) 

m=-co 
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w 
... (7) 
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J y(x) 
-Tl 

dx 

and is termed the growth factor and is given as 

c _ I 1 - 2M(1 - B) [ 1 - cos (m Ax)] \ 
T (m) i 1 + 2Pl 0 [1 - cos (m Ax) ] J 

From inspection of (7) T? is convergent providing^^ < - 1. ^ 

however varies with 8 and therefore with numerical method. 

Behaviour of<£/ ^ is shown for the Explicit, Implicit and Crank Nicholson 

methods, figure 6 and the following important constraints apply. 

Numerical 
Method 

Limiting Value of M 

Smooth Convergence Stable Oscillation 

Explicit 
Implicit 

Crank Nicholson 
Du Fort Frankel 
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Clearly all methods except the Explicit method are unconditionally 

stable. 

The methods were examined by increasing At until oscillations occurred 
using a practical fuse model. In the case of the Crank Nicholson method 

small oscillations were observed in solutions when At was increased to 

excessive step lengths of the order of 10s. All the other methods behaved 
as predicted by Richtmeyers analysis. 



Rate of convergence is important in minimising computer running times. 
Again according to Richtmeryer^ convergence rate is related to solution 

trunction error and generally the lower the error the faster the conver- 
gence. From figure 6 it is clear that the Implicit method though always 
smoothly convergent has larger errors than the Crank Nicholson method 
and is therefore relatively slowly convergent. 

6. DISCU55I0N Several numerical methods have been presented for 

solving fuse electro-thermal equations and were assessed against analyti- 
cal solutions for comparison purposes. Although the chosen analytical 

solutions bear little resemblance to actual fuses, they do permit 
establishment of some general guide lines on the numerical behaviour of 
solutions of fuse equations. 

Other numerical methods termed 'Multi Time Step' methods^ were also con- 

sidered. These methods were theoretically slightly more accurate than 
the methods presented in this paper but storage was at least twice the 

maximum storage for the presented methods and more complex to program, 
as 'Multi Time Step' varieties involve storing and computing with tempera- 

ture values at three or more times steps at each time interval. 

The method found most suitable from these and subsequent studies was the 

Crank Nicholson method even though the Explicit method was superior in 
accuracy, convergence and storage. The Explicit method was rejected 
for calculating conductor temperature as the method became unstable at low 

values of M which limited applications to exceptionally small values of At. 

The methods were checked for the more practical fuse case where electrical 

conductivity varied with temperature. The problem investigated was iden- 
tical to that specified in section 2 except that 

fA 

(1+a(Tj-TA) ) 

The results using the presented methods were again compared and two inter- 
esting findings made. 

(a) The method used by Leach et al^, which gave identical results with 
the Crank Nicholson method when joulean heat generated was constant, gave 

lower temperature predictions than the Explicit, Implicit, Crank Nicholson 
and Du Fort Frankel methods. This result may be expected as the method 
used by Leach et al. assumes temperature rises identically over both 

halves of the time interval. The Du Fort Frankel method was again the 
least accurate. 

(b) Predictions of times to reach melting temperature using estab- 

lised at (Tm+Tft)/2 and c(T) were in reasonable agreement for short melting 

times but differed increasingly as melting times increased. This finding 

is of interest as it demonstrates that for the conditions stated the 
'mean electrical conductivity' value may be used in some short-circuit 

calculations without great error, (figure 7). 

7« CONCLUSIONS Numerical methods for predicting fuse characteristics 
have been assessed against the desirable criteria of high accuracy, stab- 
ility, low computer storage and running times with minimum complexity. 

The method of Finite Differences was found superior to other methods and 

the Crank Nicholson formulation the most suitable for solving fuse equa- 

tions. 
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