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Abstract: To predict the melting characteristics of 
fuses by simulation, the combined field problems of 
current flow in the fuse conductor, and of heat con- 
duction in the complete fuselink are solved using a 
three-dimensional Finite Volume Method. Addition- 
ally, the dissolution of copper in liquid solder, which 
serves to adjust the characteristics in the low overload 
region („M-Effect“), is modeled, based on data from 
furnace measurements of this process. The simulation 
method allows to predict the local temperature evolu- 
tion in the fuse, from the adiabatic short-circuit range 
to the overload region with fusing times in the hour 
range. Examples are given and compared to measure- 
ments. The agreement is good. 

1 INTRODUCTION 

The time-current characteristic of high-power 
fuselinks is mainly determined by the geometry of the 
fuse conductor, the insulating enclosure and the sand 
filler volume, as well as by their thermal and electrical 
data (thermal conductivity and capacity, electrical 
resistivity). Two methods are widely used to adjust the 
fusing characteristics. Periodic notches in the con- 
ductor (current constrictions) determine the near- 
adiabatic range at high short-circuit currents. The 
melting-in this range is directly proportional to the 
minimum cross-section of the fuse conductor. In time- 
lag fuses the so-called „M-Effect“ is utilized in the 
range of low overload current and long fusing times 
(minute to hour), respectively. A soft solder deposit, 
generally of tin or tin alloy, in the vicinity of some of 
the constrictions becomes liquid when a certain over- 
load current is exceeded. It gradually dissolves the 
fuse conductor of Cu or Ag by diffusion and reduces 
its cross-section, which in turn leads to further heating 
until finally melting occurs. This effect shifts the cur- 
rent limit between fusing and non-fusing to lower 
currents. Related to the same nominal current, M- 
Effect fuses yield a longer time delay in the overload 
and short-circuit range, compared to fuses of the same 
basic design, but without solder. 

The adjustment of the fusing characteristic 
caused by the M-Effect in the overload area depends 
on many parameters, such as conductor-solder combi- 
nation, solder volume, conductor thickness and ge- 
ometry, position of the solder relative to the constric- 
tions, heating intensity in the solder vicinity, and all 

other factors that influence the heat balance in the 
fuse. The new-design of fuses or changes in their 
characteristics have therefore been a laborious and 
time-consuming iterative experimental process. Soft- 
ware tools able to model all processes influencing the 
fusing characteristics could considerably decrease this 
expenditure. 

A realistic simulation has to model the coupled 
processes of current flow, which determines the local 
heating power, and of the thermal power balance 
(= heat diffusion equation), both in a complicated 
structure consisting of a variety of different materials. 
Both are described by second order partial differential 
equations that must be solved by either analytical 
approximations or numerical methods. 

Approaches to simulate these processes have al- 
ready been made in earlier work. In [1,2,3,4] the tem- 
perature distribution, and the thermal and electrical 
resistances of basic elements of the fuses are described 
by exact or semi-empirical analytical equations, and 
combined with iterative solution procedures. In [5] the 
fuselink is represented by an equivalent R-C network, 
in [6,7] a similar approach leads to a „transmission 
line model“. Other simulations discretize the fuselink 
including its conductor according to Finite Element 
(FEM) or Finite Difference (FDM) schemes. Because 
of the typical geometry of fuses a three-dimensional 
discretization is generally necessary, at least for the 
heat diffusion problem. In [8,9] a commercial FEM 
package has been used to model heating of relatively 
simple fuse geometries without notches and with one 
single notch, respectively. Other FEM work has been 
reported in [10,11]. In [12] a 3-dimensional FDM 
Method, which is similar in principle, was chosen to 
simulate pre-arcing characteristics. 

The dissolution process behind the „M-Effect“ 
has either not been taken into account in some work, it 
has been simplified by an „effective melting tem- 
perature" [1], or modeled by a temperature-dependent 
dissolution speed derived from measurements [8,9]. In 
[5,13] the basic 2nd order partial differential equation 
for the local and temporal concentration of Ag in Sn 
(Pick's second law) has been used. The problem was 
transferred to an equivalent electric network and 
solved by a network simulation package. For this the 
solder and conductor must be finely meshed around 
the solder spots. 

1 The author is indebted to Messrs. Brogl, Riickling, and Zenkel from Lindner GmbH, Eggolsheim for valuable 
discussions and for providing measured fuse data. 
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Fig. 1: 3D model of a fuse 
100 A, NH 00. 
(Right end plate removed) 

While former work, due to limited computer ca- 
pabilities, often had to concentrate on partial problems 
or on parts of the fuse geometry only, the progress in 
computer technology enables the modeling of more 
and more complex structures in less time. It has there- 
fore been the aim of this work to develop a Windows- 
based program code for modeling complete fuses, 
including the M-Effect, on PCs. 

2 FDM SIMULATION METHOD 

2.1 Heat Balance (Heat Diffusion) 

The starting point is the power balance equation 
for each volume element dV in the integral formula- 
tion 

,2 gj 
III dV = HI pc — dV - jjf div(A ■ grad T) dV (1) 

<J Vet 

elec, gener. heat storage thermal conduction 

The left term of equ. 1 (it exists only in the fuse 
conductor elements) denotes the heating power from 
the current flow. It is in balance with the heat stored 
by temporal change of temperature, and the power 
removed from the element by thermal conduction. For 
steady state temperature calculations the heat storage 
term is zero. By using Gauss’ integral law, the last 
term is replaced by 

-ft(AgradT)dn, (2) 

which expresses that the heat conduction term is 
equivalent to the power that traverses the surface of 
the volume element. 

2.2 Potential Equation and Current Density Dis- 
tribution 

The equation for the electric potential (Laplace 
equation) is of the same type as equ. 1, but only con- 
sists of the conduction term: 

\jj div (a ■ grad U) dV = 0 (3a) 
and 
ft (a ■ grad U) dn = 0, (3b) 

respectively. When the potential is known from solv- 
ing equ. 3, the current density j necessary in equ. 1 
follows from 

jx=o-dUldx, jy 

J = y]j*2 +Jy2 +J\2 

<7-dU/dy, j2 =... 
(4) 

The calculation of equ. 3 can be restricted to the 
region of the fuse conductor. If this is a flat strip it 
could further be simplified two-dimensionally. To 
allow for more complicated geometries, the 3D repre- 
sentation was kept throughout. In this case it has 
proved satisfactory to model the complete thickness of 
the conductor (in Fig. 1 in z-direction) by only one 
element. 

2.3 Discretization 

Fig. 1 gives an example of a fuselink with indi- 
cations of the discretization. The scheme is in princi- 
ple identical for both field problems. It is also referred 
to as Finite Volume Method. The complete three- 
dimensional simulation volume is divided in x-, y-, 
and z-direction by a rectangular, not necessarily equi- 
distant grid. The grid points are indexed i in x-, k in y- 
and / in z-direction. Each brick-shaped domain be- 
tween 8 adjacent grid points has thermal and electrical 
properties, which are constant within each domain, 
but dependent on its average temperature, which 
changes with time. The domains are indexed accord- 
ing to their left, frontal, upper edge point. The tem- 
perature equation (equ. 1, 2) and the potential equa- 
tion (equ. 3), respectively, are set up as difference 
equations and solved for all grid points. For this the 
balance over the control volume around each point 
i,k,l consists of the contributions of the 8 neighbor 
regions, namely: 
i,k,l and i+l,kj and z,£+l,7 and /,£,/+1 and j+l,A+l,/ 
and i+!,£,/+] and z,£+1,7+1 and z+l,/fc+1,7+1. 

The principle can best be seen for the two- 
dimensional case, Fig. 2, where only the indices i and 
k are used in x- and y-direction, and where each point 
i,k shares only 4 neighbor regions. The balance is set 
up for the area within the dashed lines, which divide 
each grid distance in two. Further details about the 
two-dimensional discretization can be seen in 
[14,15,16]. The three-dimensional procedure is 
equivalent and yields for each grid point z, k, 7 a linear 
equation of the form 

14 



i-1. k+1 

Xi-1,k (a,l?'CP 

[3T”m 
im 

i-1.k l u m sm 
x 

i-l.k-1 

i-1, k-1 
Pi—1 

i. k+1 

dn 

.k-1 

i.k-1 
Pi 

i+1,k-1 

control volume (area) — 

i+1, k+1 

cr 

i+1,k 

er 

Fig. 2: Discretization (2D). 

~Ni,k,l'Ti,k + l,l ~Wi,k,l'Ti-\,k,l 

~Si,k,l'Ti,k-l,l ~Ei,k,l Ti + l,k,l 

~Gi,k,l Ti,k,l+l~Hi,k,rTi,k,l-\ 
+ ^i,k,l Ti,k,l ~ Ei,k,l 

(5) 

This equation links the temperature of point i, k, 
l (M stands for Middle coefficient) to its 6 neighbor 
points in the directions Worth, West, .South, East, 
Ground, and Heaven via the appropriate coefficients. 
Because of symmetry of the problem, e.g. 
WM = Ei.Ui, only three sorts of coefficients (N, E, G) 
are needed for each point. They contain the grid dis- 
tances and the temperature-dependent properties of 
the partial volumes. The right-hand side DiX, contains 
the known temperature of point i, k, l at the old time 
step, the links to neighboring boundary points (if 
existing), and, if the volume is a conductor element, 
the heating power j2/a integrated over the control 
volume. The latter results from the current distribution 
simulation in the conductor. 

Equ. 5 for all points constitutes a system of lin- 
ear equations of the form 

A-x + b = 0, (6) 

where A is a square matrix containing the M, N, E, G 
links to the neighbors, x the vector of the unknown 
temperatures in the grid points at the new time step, 
and b the vector of known values that result from the 
boundary points and the temperatures at the last time 
step as well. As the coefficients of A depend on the 
temperatures, equ. 6, which is an implicit scheme for 
the unknown temperatures, must be set up and solved 
for every time step. (It has proved that the temperature 
values from the latest time step are accurate enough 
for this, so iterations of these coefficients within each 
time step are not necessary.) 

2.4 Boundary Conditions 

In the potential calculation the Dirichlet condi- 
tion U= 0 is taken for the left end plate and U= 1 V 
for the right one, while the other boundaries are iso- 

lated (d/dn = 0). After integrating the resulting cur- 

rent densities across one of the end plates the voltage 
drop is corrected linearly to the actual current. The 
current may be kept constant or vary with time, e.g. 
sinusoidally. For the work reported here D C. current 
was used, yielding directly the virtual melting time. 

For the temperature boundaries the outer coordi- 
nates of the end plates were assumed to have constant 
temperature (Dirichlet). To account for the heating by 
the contact resistance and the current leads [1], tem- 
peratures higher than room temperature, e.g. 80 °C, 
were taken. The outer areas of the ceramic body were 
treated as heat transmission to the surroundings with 
1.2-106 Watts per square millimeter and Kelvin of 
super-temperature. It was found, however, that this 
has little effect, and that these areas could be regarded 
as thermally isolating. 

Symmetries were taken into account by appro- 
priate symmetry conditions. The example of Fig. 1 
represents the complete fuse length in x direction, but 
it is symmetrical with respect to y = 0 and z = 0. 
(Though the solder layer is applied only one-sided in z 
direction, the method described in section 3.2, Fig. 5b 
allows to use symmetry conditions.) 

2.5 Computation Procedure 

To solve the large equation system (equ. 6) - the 
thermal model of Fig. 1 consists of approx. 35 000 
nodes - a fast iterative solution method with precondi- 
tioning [17] was chosen. For simulations of the sta- 
tionary state the potential/current density simulation 
and the stationary temperature simulation were carried 
out alternately with actualized material data at every 
step, until the results converged. For the simulation of 
temporal temperature evolution the potential/current 
density calculation should normally be followed by 
the next time step of the dynamic temperature calcu- 
lation, and so on. It was found out that it is sufficient 
for the usual fuse conductor geometries to compute 
the current distribution only once at the beginning, 
despite of the considerably changing temperature and 
hence electrical conductivity distribution. The current 
has to flow through the constrictions anyhow, so the 
current density distribution, especially in the notches 
where most of the heat is generated, does not vary 
much. 

The dynamic calculation is finished when the 
melting point in the hottest spot of the conductor is 
reached. 

3 MODEL OF FUSE CONDUCTOR 
DISSOLUTION IN SOLDER 

3.1 Diffusion Data 

The dissolution of silver or copper in solder, 
which becomes appreciable when the liquidus tem- 
perature of the solder is exceeded, is a rather complex 
process, and it has to be more or less simplified. Fol- 
lowing Cu and Sn stand also for other combinations of 
solid metal and solder. Diffusion may be described by 
Pick's second law [13] for the concentration C (in this 
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which is roughly proportional to the solder thickness, 
Fig. 3. A detailed consideration in [8] proves that this 
correlates with the maximum amount of Cu soluble in 
the liquid Sn, and which follows the temperature- 
dependent liquidus line of the phase diagram [20], 
plus an additional amount of copper consumed by 
intermetallic layers that form between the solid Cu 
and the solder. The dissolution depth xd and the con- 
centration by volume C, respectively, of Fig. 3 follow 
a [l-exp(-t/r)] curve rather than a square root law: 

*d(0=*s.r[l-exp(-//r)] (9) 

xSat and r depend on the temperature 9. The dif- 
ferentiation of equ. 9 yields the dissolution speed: 

vd = v0-exp(-//r) (10) 

This means that the dissolution speed starts with 
an initial value v0 and decreases to zero as the final 
concentration CSal(5) is approached. The simplest and 
physically sound way to account for this is to assume 
that the volume concentration of conductor metal in 
the liquid solder is constant across the molten pool, 
and that the dissolution speed depends on the concen- 
tration ratio 

vd(C, 5) = v0(i9)-[l-C/CSat(5)] (11) 

The momentary concentration by volume C is 
related to the dissolution depth xd by 

C = Xj/ (ds + xd) (12) 

Fig. 3: Mean dissolution depth of Cu in Sn for differ- 
ent solder thickness ds. dCa = 200 pm, 9 = 480 °C. 

case the concentration of copper in liquid tin or tin 
alloy). 

^ = (7) 
dt dx2 

The diffusion constant D is temperature- 
dependent and follows the Arrhenius law. 

D = D0exp[-g / (kJ)], (8) 

where Q is an activation energy. 
Equ. 7 also describes the diffusion of liquid Sn 

into solid Cu, however this process is negligible in 
comparison [18]. The solution of equ. 7 yields a quad- 
ratic increase of dissolution depth with time, which 
has been observed by some authors [13,19]. Equ. 7, 
which describes any diffusion process in principle, 
applied to the diffusion of a solid metal (concentration 
C=100 %) into a liquid metal (solder) would yield an 
ever increasing concentration and cannot account for 
the fact that there is clearly a temperature-dependent 
saturation. Also the exact local gradient of concentra- 
tion within the solder would play an outstanding role. 
It has been shown clearly in furnace experiments [8] 
that the depth of Cu (and Ag, respectively) consump- 
tion („dissolution depth") by liquid Sn or Sn alloy 
approaches a temperature-dependent saturation value, 

Fig. 4 shows results of CSal(7) derived from the 
liquidus line [20] and of vd(T) measured by [8] in an 
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Arrhenius plot. They can be approximated by 

'-4150 lO 

Q, = max 
32.8 exp 

1 

(13) 

V~~ = 15.5-exp( 76^.0K] (14) 
mm/s 

In the subsequent simulations the factor in equ. 
13 was doubled, i.e. 65.6 instead of 32.8, because this 
gave the best correlation with measurements. This is 
physically justified because the additional consump- 
tion of Cu by intermetallic layers (at lower tempera- 
tures up to 100 % [8]) is not taken into account by 
equ. 13. 

3.2 Implementation into FDM Model 

Jpi:   XS etc- 
~~H 

ACuet^ 
a) 

Cu 

-- ^cu ate. /lEqu Qtc. ^cu ale, Cu 
b) 
Fig. 5 Replacement of conductor/solder sandwich by 
an equivalent conductor, 
a) original sandwich b) equivalent 

The assumption of a concentration C independ- 
ent of the local position within the solder pool enables 
the simplification in z direction illustrated in Fig. 5. 
Instead of a complete discretization across the con- 
ductor/solder sandwich, this cross-section is replaced 
by an equivalent conductor of the original thickness 
dCu, but with equivalent data for the electrical and 
thermal conductivity, such as 

■) _ ^cu (dCu ~
xd) + (ds +xd) 

AEqu ~ , ) U-V 
aCu 

i.e. both parts are switched parallel and concentrated 
into one equivalent conductor. This is justified be- 
cause the current flows mainly perpendicular to the z 
direction and the temperature difference across the 
sandwich thickness is only small. The data of A, a 

for the solder vary with the solder composition and 
are not known. It was found out by comparison be- 

tween simulations and measurements, however, that 
the best approximation is to assume them to be negli- 
gibly low. Then the electrical and thermal transport is 
only determined by the remaining copper thickness. 
This seems justified, too, because the conductivities of 
liquid solder and of intermetallic Cu-Sn compounds 
are known to show low values compared with the base 
metal. The heat capacity of the solder is treated ac- 
cordingly, but not neglected. 

The dissolution depth xd at each time step and 
each solder location is calculated by adding At vd to 
the xd values accumulated during the previous time 
steps. vd follows from equ. 11. 

4 SIMULATION EXAMPLES AND COM- 
PARISON WITH MEASUREMENTS 

4.1 Fuse Models 
As an example Fig. 6 shows a section of the 

100 A fuse conductor of Fig. 1. Due to symmetry only 
one half of the six parallel rows of constrictions is 
modeled in y direction. If the effect of the sand and 
the ceramic part lying outside the conductor geometry 
in y direction could be neglected, it would have been 
sufficient to model only a small disc-shaped portion 
(1/12) of the complete fuse between y - 0 and the 
dashed line. The trapezoidal notches (neck width 0.5 
mm, length 1 mm) plus the additional round heating 
holes are replaced by step-shaped contours. The 
hatched area covered by solder extends over a multi- 
tude of elements, thus enabling the local resolution of 
the Cu dissolution process. 

In order to model the adiabatic range at high 
currents correctly, the heat capacity of the z layer 
adjacent to the conductor layer (whose thickness is 
half of the conductor thickness of » 0.15 mm) should 
not add much to the resulting heat capacity of the 
relevant nodes. This means that the thickness of the 
first sand layer has to be small [21], e.g. <0.1 mm. 
The thickness of the following layers is increased 
gradually. 

There are in principle many ways to fit the 
simulation data to measurements, especially the data 
of solder dissolution. For the electrical resistivity, heat 
conductivity and heat capacity of the Cu conductor 
and the ceramic body standard data from the literature 
were taken, with a first order dependence on tem- 
perature. The data for sand are based on measure- 
ments in [8]. Depending on the sand quality the heat 
conductivity ranged between 0.27 and 0.4 W/(m K), 
with a temperature coefficient between 1.26T0'3 and 
1.37 10"3 K1. Due to the best agreement the lower 
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values were taken. The specific heat was taken as 
0.6 Ws/(g-K), with a temperature coefficient of 
1.7T0'3 K.' [8]. The solder diffusion was modeled 
with the data from section 3.1. 

4.2 Simulation Results 

The simulation yields the temporal evolution of 
electric potential, current density, and temperature at 
any point. The following typical results were gained 
for the fuse of Fig. 1, Fig. 6 with a deposit of solder 
0.6 mm thick. 

Fig. 7 depicts the simulated evolution of the 
temperatures as well as the solder dissolution depth 
with three currents that are typical for different re- 
gimes. In Fig. 8 the temperature profiles when the 
hottest spot just reaches melting temperature are 
shown for these cases. 

At 1.6•/„ the solder dissolution is the governing 
mechanism. The solder dissolution starts slowly when 
the solder melting point is exceeded. The temperatures 

after an initial rise to nearly stationary conditions 
increase only slowly due to the decreasing Cu thick- 
ness. (Without solder the hottest point, position 1, 
would reach a stationary temperature of around 
350 °C.) Finally, when most of the copper thickness 
has been consumed, the situation tilts. The tempera- 
ture approaches quickly the melting point in the cen- 
tral constrictions with the solder deposit, the complete 
Cu thickness is being diffused through in these spots. 
Except for the sharp peak resulting from the final 
heating, the temperature profile (Fig. 8) shows a con- 
tinuous drop from the center to the end plates 

At 25 •/„ on the other hand, the heating process is 
nearly adiabatic. All constrictions - except for the 
central ones (position 1), whose heat capacity is 
higher due to the solder - show an identical progres- 
sive temperature rise until they melt after a few milli- 
seconds. The profile clearly shows that the heat gener- 
ated in the necks has not diffused outward yet. The 
solder dissolution in this short time is practically zero. 
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Fig. 7: Temporal evolution of temperature 
at different points and dissolution depth 
at point 1 for different currents. 
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Fig. 10: Simulated pre-arcing times without solder 
and with solder. 

The current 3.5•/„ with a fusing time of the order 
of 20 seconds is an intermediate condition where the 
solder dissolution just begins to play a role. The time 
scale is long enough for the heat to diffuse out of the 
constrictions, but still far from near-stationary. The 
dissolution depth at the moment of melting has 
reached about 2/3 of the total conductor thickness, the 
reduced copper cross-section has already contributed 
to some additional heating. The peak in the tempera- 
ture profile in the center is also an indication of this. A 
comparison with Fig. 10 shows that in this current 
range the time-current characteristic begins to deviate 
from that of an identical fuse without solder. 

Fig. 9 compares time-current characteristics of 
simulations and measurements of a 50 A fuse. It has 
three parallel rows of necks with similar main dimen- 
sions as those of Fig. 1/Fig. 6. The dashed lines mark 
the region determined by EN 60269-1 / IEC 269-1. 
The good agreement, which was also found for fuses 
with other rated currents, confirms the usefulness of 
the simulation method as a tool for fuse design. 

To demonstrate the influence of the „M-Effect“ 
on the fusing characteristic, Fig. 10 shows a compari- 
son with an additional simulation, where the solder 
has been removed. The fusing characteristics are 
identical for ///„>4. Below this threshold the dissolu- 
tion process becomes effective and shifts the charac- 
teristic towards lower currents and times, respectively. 

5 SUMMARY AND CONCLUSION 

A three-dimensional FDM model for the simu- 
lation of fuses has been presented, including a model 
of the dissolution of the fuse conductor in liquid sol- 
der („M-Effect“). It simplifies the diffusion process by 
a dissolution speed, which depends on the temperature 
and the concentration of conductor metal in the solder. 
Examples of typical simulation results have been 

presented and discussed. The good agreement be- 
tween simulated and measured time-current charac- 
teristics confirms the usefulness of the simulation 
method as a design tool. 

6 LIST OF SYMBOLS 

A coefficient matrix 
b vector of known quantities 
C concentration (by volume) 
CSu saturation concentration 
cP specific heat 
D,D0 diffusion constant 
dCu thickness of (Cu) conductor 
ds thickness of solder layer 
dn element of surface area 
dV volume element 
I current 
/„ rated current 
i,k,l indices 
k Boltzmann constant 
j current density 
t time 
Q activation energy 
T absolute temperature 
ty virtual melting time 
U voltage, electric potential 
vd dissolution speed 
v0 initial dissolution speed 
xyj. Cartesian coordinates, directions 
xd dissolution depth 
xSat saturation dissolution depth 
x vector of unknown temperatures (potentials) 
D,E,G,HM,S,W 

coefficients of difference equation 
At time increment 
A thermal conductivity 
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^cu thermal conductivity of (Cu) conductor 
thermal conductivity of solder 

p density 
o electrical conductivity 
9 temperature 
T time constant 
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