


6(t) = Z(t)P (2) 
(5) 

Z(t) is a function which increases from zero at t=0 to 
a steady-state final value Zss. Using the same concept 
for a fuse, for a one-shot melting test from room 
temperature, 

Dividing (4) by (5) gives the normalised transient 
thermal impedance f(t) as 

- Z(tm ) AH (3) 

where 

9m = temperature rise up to melting point 

tm = melting time 

/,„ = current which produces melting in a time tm 

Rm = average fuse resistance during the melting period 

Use of the average value Rm is an approximation, 
since the fuse power actually increases with temperature 
due to the positive temperature coefficient of the 
element metal. The average resistance over the melting 
period will vary with the waveshape of the temperature- 
time transient, but will typically be about 2.4 times the 
value at 20C. 

The transient thermal impedance is then given by : 

Z{tm) - 

R I nm 1 m 

(4) 
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Fig, 2 Typical time-current characteristic 

II. 1 Normalization 

m 
Z(A„) 

-.2 

(6) 

f(t) increases from 0 to 1 as time increases from zero to 
infinity, and the curve can be derived very simply from 
the fuse time-current characteristic. Fig.2 shows a 
typical time-current characteristic for a fast-acting fuse 
and Fig.3 shows the derived normalised transient 
thermal impedance curve. For each time value on Fig.2 
the corresponding melt current I„, is known, and then the 
corresponding value of /(f) is calculated using (6). 
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Fig.3. Transient thermal impedance derived from Fig.2 

II.2 Heating from an initial temperature 0« 

The previous heating history (for t < 0) gives 
On = Z„ P0 and so, for an average fuse resistance R, 

0(f) = + (P-P0)Z(t) 

0(f) = 0O + (I2R - -^—)Z(r) 

9(0 = %[/-/(')] + 0^/(0 

This can be normalised by dividing by 
0m ( = RmZjJ) to give the per-unit temperature rise as 

Assume that the 10000s point on the time-current 
curve represents a steady-state thermal condition and 
take the current at this point (/_) as a reference (base) 
value. This then gives 

9(0 = |/-/(OI9o + «7^/(0 (7) 

where the bar indicates a normalised (p.u.) value. 
Temperature is expressed as a fraction of the 
temperature rise to melting while current is a multiple of 
the 10000s current O,. a = R/R„, and is the ratio of 
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the average fuse resistance during the heating period to 
the average resistance from room temperature to 
melting. 

II.3 Response to a multipart cycle 

Consider a cycle with N blocks of current as shown 
in Fig.4. During each block the r.m.s. current is 
constant. 

90=9N 9 I 92 9j 9N-I 9I 
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Fig.4 Fuse response to a complex loading cycle 

Writing f(T/) = // and applying (7) to each of the 
blocks in turn gives 

9j = (l-f])9N + afjlj' 

92 = (l-f2)9i + a f2l2
2 

= U ~ fk y^k-l + a fkh2 

This can be rewritten as the cyclic matrix equation 

-V-fi) 

1 

—U-IN-I) 

-(/-//) 

=a fsh 

fsh 

which can be solved for the temperatures at the ends of 

each of the time blocks (9 ...). The square coefficient 
matrix is very well conditioned. 

The ratio of average fuse resistance within each time 
block to the average resistance during a melting test for 
this time actually varies from block to block, but in this 
simplified analysis an average value of a has been used, 
assumed to apply over the whole cycle, a then appears 
in the equations as a simple scaling factor. The 
temperatures can be initially calculated with a= 1 and 
then scaled down as desired. 

The resulting system of equations is linear. If very 
high currents are input the resulting per-unit 
temperatures can exceed 1, which corresponds to a 
value higher than the melting point. This is not 
allowable and can be dealt with by testing the results 
after the solution. 

After the values of 9 have been found, the actual 
shapes of the temperature waves within a current block 
can be calculated if desired using (7). However the 
waveshapes within a block are not needed in practice, 
just the temperatures at the start and finish of the block. 

H.4 Counting the number of straining events 

If a straining event is defined by a transition from a 
PEAK to a TROUGH on the temperature-time wave, 
examination of many different cyclic temperature 
waves has shown that within any cycle with N blocks 
there is a minimum of 1 and a maximum of N/2 
straining events. An example is shown in Fig 5 below. 
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Fig.5 Temperature response with peaks and troughs 

The response shown in Fig.5 contains 2 straining 
events with magnitudes A9: and A92. In general the 
number and magnitude can be found by the following 
algorithm : 

a) scan all transition points and mark peaks with a ‘P’ 
and troughs with a T’. Otherwise mark with an ‘x’. 
The number of straining events is equal to the 
number of peaks (or troughs). 

b) scan a second time and calculate the peak-to-peak 
temperature differences between each peak and the 
next trough (A9,, A92...). 

There is an ambiguity here, depending upon 
whether A9 is defined at the difference between a peak 
and a subsequent trough or vice-versa, i.e. 2 straining 
events within a cycle can be defined in 2 different ways. 
In this paper the start of an event is defined as the first 
peak or trough encountered within a cycle. 
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II.5 Typical results 

Fig. 6 shows the per-unit temperature (lower graph) 
response calculated using the normalised transient 
impedance curve of a 350A fuse used in a traction 
application. The current loading (upper curve in Fig.6) 
in this case was taken directly from measurements on a 
railway locomotive at 5 minute intervals over a 24-hour 
period, giving a duty cycle with 288 blocks of current. 
600 

1 m 
0.2 

time, mm 1440 

Fig.6 Thermal response of fuse to traction cycle 

r ~ Y7 lr"™ AOj P + AO2 P + 

and the number of cycles to failure becomes 

N =     —   (9) 
AO/ P + AO2 P + Ir 

The value of K' for use with (9) must be determined 
experimentally. This can be done by tests with a simple 
ON/OFF cycle. The values of AO are calculated using 
a- 1, absorbing the unknown value of a into the 
constant K'. Alternatively, if finite-difference or finite- 
element methods are used to calculate the AO s, these 
values can be used directly with (9). 

IV. CONCLUSION 

Fuses are tested with simple ON/OFF loading 
cycles, but practical applications usually involve 
complex loading cycles. An approximate method has 
been described for evaluating the thermal response of a 
fuse using a normalised transient thermal impedance 
curve, derived from the fuse's known time-current 
characteristic. After the thermal response has been 
computed, the resulting life can be estimated, based 
upon the number of straining events produced by the 
cycle, and their magnitude. The method allows the 
severity of different loading cycles to be compared. 

Although the cycle shown contains 288 blocks, the 
temperature response curve contains only 29 straining 
events. 

III. ESTIMATION OF FUSE LIFE 

The average temperature rise of the fuse is assumed 
to depend on the r.m.s. current loading (as a fraction of 
the rated current), according to a power law. With this 
assumption eq.(l) becomes 

The main approximation in this method is that the 
fuse resistance is represented by an average value over 
the operating temperature range. For adequate life under 
cycling the peak-to-peak temperature excursions need to 
be kept relatively low, so this approximation is 
acceptable. For more accurate analysis full numerical 
modelling which takes the temperature-dependence of 
the element metal properly into account, must be used. 
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N 
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For a simple ON/OFF cycle the rate of 
deterioration can be defined as the reciprocal of the 
number of cycles to failure. The rate of deterioration is 
therefore 

1 i 
- 

For a multipart cycle each straining event 
contributes to an increase in the rate of deterioration, 
according to its magnitude, and so the total rate is 
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